$[Zn_2(C_{15}H_{14}N_2O_8)(H_2O)_4].2H_2O$

021-Zn1-025	85.3 (2)	C5N9C18	111.9 (4
017—Zn1—021	165.9 (2)	N8-C10-C11	109.0 (5
013—Zn1—O21	86.5 (2)	C10-C11-012	118.1 (5
N9-Zn1-O25	79.9 (2)	C10-C11-013	116.0 (5
N9Zn1017	102.3 (2)	O12-C11-O13	125.9 (6
N8—Zn1—O25	148.5 (2)	C5-C4-N8	118.9 (5
N8-Zn1-017	79.2 (2)	C6-C5-N9	121.5 (5
N8-Zn1-N9	80.3 (2)	C4-N8-C10	113.9 (5
O17—Zn1—O25	81.4 (2)	C5-N9-C22	114.4 (5
013-Zn1-025	128.2 (2)	C18-N9-C22	110.5 (4
013—Zn1—O17	98.0 (2)	C10-C11-O13	116.0 (5
N9—Zn1—O21	79.9 (2)	O12-C11-O13	125.9 (5
N9-Zn1-013	147.8 (2)	C10-C11-O12	118.1 (5
N8-Zn1-O21	114.8 (2)	N8-C14-C15	113.8 (4
N8—Zn1—O13	79.2 (2)	C14-C15-O17	118.3 (5
O20-Zn2-O24	87.0 (2)	O16-C15-O17	124.4 (6
O24Zn2O3W	97.4 (2)	C18-C19-O21	118.3 (5
O24Zn2O1W	171.1 (2)	C22-C23-O25	118.2 (5
O20—Zn2—O3W	174.6 (2)	O24—C23—O25	123.4 (5
O20—Zn2—O1W	86.4 (2)	Zn1-N9-C5	110.2 (3
O2W—Zn2—O4W	177.7 (2)	Zn1-025-C23	114.6 (4
01W—Zn2—O4W	93.7 (2)	Zn1-021-C19	113.6 (4
O1W—Zn2—O2W	84.2 (2)	C18—N9—Zn1	108.0 (4
O24Zn2O4W	92.3 (2)	Zn1-N8-C10	101.9 (4
O24Zn2O2W	89.6 (2)	C14—C15—O16	117.2 (5
O20—Zn2—O4W	89.7 (2)	N9-C18-C19	114.3 (5
O20—Zm2—O2W	89.1 (2)	N9-C22-C23	109.8 (5
O3WZn2O4W	87.0 (2)	C22—C23—O24	118.4 (5
O2W—Zn2—O3W	94.0 (2)	O20-C19-O21	126.6 (6
01W—Zn2—O3W	89.5 (2)	C4—N8—Zn1	110.7 (3
C3-C4-N8	121.4 (5)	Zn1-N9-C22	101.1 (3
C4-C5-N9	119.4 (5)	Zn1N8C14	107.3 (3
C4N8C14	111.6 (5)	Zn1-013-C11	115.8 (4
C10-N8-C14	110.8 (5)	Zn1-017-C15	116.6 (4

Calculated positions were used for the H atoms of the organic skeleton, all were refined will a common overall isotropic displacement parameter.

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: XRAY System (Stewart, Kruger, Ammon, Dickinson & Hall, 1972). Structure solution: SHELXS86 (Sheldrick, 1985). Structure refinement: SHELX76 (Sheldrick, 1976). Software used to obtain parameters of interest: PARST (Nardelli, 1983).

We wish to thank the Education Council of the Canary Islands Government (grant No. 33/01.06.88) and the Spanish Ministry of Education and Science, Spain (DGICYT, grant No. PB89-0401), for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1187). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Azuma, S., Nakasuka, N. & Tanaka, M. (1986). Acta Cryst. C42, 673-677.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). *Ab Initio Molecular Orbital Theory*, p. 386. New York: Wiley.
- Hernández-Padilla, M., Sanchiz, J., Dominguez, S., Mederos, A., Arrieta, J. M. & Zúñiga, F. J. (1995). Acta Cryst. C51. In the press.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

McCandlish, E. F. K., Michael, T. K., Neal, J. A., Lingafelter, E. C. & Rose, N. J. (1978). *Inorg. Chem.* 17, 1383–1394.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Matsumura, K., Nakasuka, N. & Tanaka, M. (1987). Inorg. Chem. 26, 1419-1422.
- Mederos, A., Felipe, J. M., Hernández-Padilla, M., Brito, F., Chinea, E. & Bazdikian, K. (1986). J. Coord. Chem. 14, 277-284.
- Mederos, A., Herrera, J. V. & Felipe, J. M. (1987). An. Quim. 83, 22-25.
- Mcderos, A., Herrera, J. V., Felipe, J. M. & Quesada, M. L. (1984). An. Quim. 80B, 281–287.
- Mizuno, M., Funahashi, S., Nakasuka, N. & Tanaka, M. (1991). Inorg. Chem. 30, 1550–1553.
- Nakasuka, N., Azuma, Sh., Katayama, Ch., Honda, M., Tanaka, J. & Tanaka, M. (1985). Acta Cryst. C41, 1176-1179.
- Nakasuka, N., Azuma, Sh. & Tanaka, M. (1986a). Acta Cryst. C42, 1482-1485.
- Nakasuka, N., Azuma, Sh. & Tanaka, M. (1986b). Acta Cryst. C42, 1736-1739.
- Nakasuka, N., Kunimatsu, M., Matsumura, K. & Tanaka, M. (1985). Inorg. Chem. 24, 10-15.
- Nakasuka, N. & Shiro, M. (1989). Acta Cryst. C45, 1487-1490.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Solans, X., Font-Altaba, M., Oliva, J. & Herrera, J. (1983). Acta Cryst. C39, 435–438.
- Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. W. & Hall, S. R. (1972). *The XRAY72 System*. Version of June 1972. Technical Report TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 1552-1554

Bis(phenylthiolato-S)bis(tri-*n*-butylphosphine-P)nickel(II), [Ni(SPh)₂(PⁿBu₃)₂]

RONG CAO, FEILONG JIANG, MAOCHUN HONG,* HONGJUN LI[†] AND HANQIN LIU

Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Fuzhou, Fujian 350002, People's Republic of China

(Received 18 July 1994; accepted 21 December 1994)

Abstract

The title compound, $[Ni(C_6H_5S)_2(C_{12}H_{27}P)_2]$, was isolated from the reaction of NiCl₂.6H₂O, NaSPh and PⁿBu₃ in MeOH. The molecule possesses a crystallographic inversion center at the Ni atom which is fourfold coordinated by two P and two S atoms with almost square-planar geometry. The Ni—S and Ni—P distances are 2.217 (2) and 2.245 (2) Å, respectively.

[†] New address: Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China.

Comment

Nickel compounds with mixed sulfur and phosphine ligands have attracted attention because of their relevance and importance to a wide variety of chemical and industrial systems. We have recently reported a series of such compounds: [Ni(S-ptolyl)₂(PⁿBu₃)₂] (Jiang, Wei, Lei, Huang, Hong & Liu, 1991), [Ni₂(PPh₃)₂(SC₂H₄S)₂] (Cao, Huang, Lei, Hong & Liu, 1992) and [Ni₂(PPh₃)₂(SC₃H₆S)₂] (Cao, Huang, Lei, Kang, Hong & Liu, 1992). Herein, we report the crystal structure of $[Ni(P^nBu_3)_2(SPh)_2]$, (I).

The molecule possesses a crystallographic inversion center at the Ni atom which is surrounded by two trans P and two trans S atoms in an almost square-planar arrangement. The Ni-S bond length [2.217(2)Å] is shorter than that (2.287 Å) found in the sulfurligated tetrathiolato complex [Ni(SPh)₄]²⁻ (Swenson, Baenziger & Coucouvanis, 1978) and similar to that (2.213 Å) in [Ni(S-p-tolyl)₂(PⁿBu₃)₂] (Jiang, Wei, Lei, Huang, Hong & Liu, 1991). The Ni-P bond length [2.245 (2) Å] is similar to that (2.237 Å) found in [Ni(Sp-tolyl)₂(P^n Bu₃)₂]. All the butyl groups of the phosphine ligands adopt the normal zigzag (all trans) conformation of the C atoms, leading to an approximately coplanar arrangement of the C atoms in each butyl group. Fig. 1 depicts the structure of the title compound.

Fig. 1. Structure of $[Ni(SPh)_2(P^nBu_3)_2]$ with displacement ellipsoids plotted at the 30% probability level.

Experimental

The title compound was obtained from the reaction of NiCl_{2.6}H₂O, NaSPh, and PⁿBu₃ (molar ratio 1:2:2) in MeOH and recrystallized from CH₂Cl₂ solution.

Mo $K\alpha$ radiation

Cell parameters from 20

 $\lambda = 0.7107 \text{ Å}$

reflections

 $\theta = 6 - 12^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$

T = 296 K

Rectangular $0.7 \times 0.5 \times 0.4$ mm

Brown-red

reflections

Crystal data

 $[Ni(C_6H_5S)_2(C_{12}H_{27}P)_2]$ $M_r = 681.70$ Triclinic ΡĪ a = 10.259(3) Å b = 12.016(4) Å c = 8.420(3) Å $\alpha = 93.23(3)^{\circ}$ $\beta = 96.52(3)^{\circ}$ $\gamma = 78.22 (2)^{\circ}$ $V = 1008.93 \text{ Å}^3$ Z = 1 $D_x = 1.122 \text{ Mg m}^{-3}$

Data collection

2788 observed reflections MSC/Rigaku AFC-5R $[I > 3\sigma(I)]$ diffractometer $R_{\rm int} = 0.025$ $\omega/2\theta$ scans Absorption correction: $\theta_{\rm max} = 25^{\circ}$ empirical (ψ scans and $h = 0 \rightarrow 12$ refinement from ΔF) $k = 13 \rightarrow 14$ $T_{\min} = 0.891, T_{\max} =$ $l = -10 \rightarrow 9$ 1.000 3 standard reflections monitored every 250 3750 measured reflections 3689 independent reflections intensity decay: none

Refinement

Refinement on F $(\Delta/\sigma)_{\rm max} = 0.10$ $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.050 $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.063S = 1.55Atomic scattering factors from International Tables 2788 reflections for X-ray Crystallography 187 parameters (1974, Vol. IV) H atoms not located Unit weights applied

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

	$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	у	z	Beq	
Ni	0	0	0	3.19 (3	
S	0.1380 (3)	-0.0785 (2)	0.2035 (3)	4.25 (6	
P	-0.0769 (2)	0.1383 (2)	0.1761 (3)	3.42 (5	
C(1)	0.0947 (10)	-0.2074 (7)	0.2421 (10)	4.2 (2)	
C(2)	-0.0360 (10)	-0.2264 (8)	0.2016 (10)	5.6 (3)	
C(3)	-0.0666 (10)	-0.3349 (9)	0.2301 (10)	7.3 (3)	
C(4)	0.0306 (10)	-0.4198 (9)	0.3025 (10)	8.4 (4)	
C(5)	0.160 (2)	-0.3996 (9)	0.3437 (10)	8.1 (4)	
C(6)	0.1946 (10)	-0.2923 (8)	0.3145 (10)	5.7 (3)	
C(11)	-0.1875 (10)	0.2681 (7)	0.1022 (10)	4.2 (2)	
C(12)	-0.2508 (10)	0.3530 (7)	0.2320 (10)	4.6 (2)	
C(13)	-0.3435 (10)	0.4557 (8)	0.1456 (10)	6.1 (3)	
C(14)	-0.4056 (10)	0.5472 (9)	0.2710 (10)	7.4 (3)	

C(21)	-0.1735 (9)	0.0792 (8)	0.3112 (10)	4.3 (2)
C(22)	-0.2978 (9)	0.0431 (8)	0.2131 (10)	4.9 (2)
C(23)	-0.3634 (10)	-0.0238 (10)	0.3262 (10)	7.7 (3)
C(24)	-0.4779 (10)	-0.0721 (10)	0.2297 (20)	10.0 (4)
C(31)	0.0507 (9)	0.1894 (7)	0.3201 (10)	4.2 (2)
C(32)	0.1555 (10)	0.2317 (8)	0.2270 (10)	5.7 (3)
C(33)	0.2664 (10)	0.2643 (10)	0.3455 (10)	7.1 (3)
C(34)	0.3699 (10)	0.3053 (10)	0.255 (2)	9.6 (4)

Table 2. Selected geometric parameters (Å, °)

Ni—S	2.217 (2)	PC(11)	1.825 (7)
Ni—P	2.245 (2)	PC(21)	1.848 (8)
S-C(1)	1.754 (8)	PC(31)	1.855 (7)
S—Ni—S'	180	Ni—S—C(1)	108.4 (3)
S—Ni—P	86.29 (8)	Ni-PC(11)	119.1 (2)
S—Ni—P ⁱ	93.71 (8)	Ni-PC(21)	108.1 (3)
P—Ni—P ⁱ	180	Ni—P—C(31)	116.4 (3)
	a	<i>/</i> *>	

Symmetry code: (i) -x, -y, -z.

Intensity data used in the refinements were corrected for Lorentz-polarization factors, linear decay and absorption based on ψ scans and refinement from ΔF (*DIFABS*; Walker & Stuart, 1983). All non-H atoms were refined with anisotropic displacement parameters.

Data collection and refinement: CONTROL (Molecular Structure Corporation, 1988). Data reduction: SDP/VAX (Enraf-Nonius, 1989). Structure solution: direct methods using MULTAN11/82 (Main et al., 1982). Structure refinement: LSFM (B. A. Frenz & Associates Inc., 1985). Molecular graphics: ORTEPII (Johnson, 1976). Preparation of material for publication: SDP/VAX.

This work was partly supported by the National Natural Scientific Foundation of China.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BK1083). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- B. A. Frenz & Associates Inc. (1985). *LSFM*. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Cao, R., Huang, Z. Y., Lei, X.-J., Hong, M.-C. & Liu, H.-Q. (1992). *Chin. J. Chem.* 11, 221–226.
- Cao, R., Huang, Z.-Y., Lei, X.-J., Kang, B.-S., Hong, M.-C. & Liu, H.-Q. (1992). Acta Cryst. C48, 1654–1655.
- Enraf-Nonius (1989). SDP/VAX. Enraf-Nonius, Delft, The Netherlands.
- Jiang, F.-L., Wei, G.-W., Lei, X.-J., Huang, Z.-Y., Hong, M.-C. & Liu, H.-Q. (1991). J. Chem. Res. (S), pp. 238–239.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Molecular Structure Corporation (1988). CONTROL. An Automatic Package for Rigaku AFC Single-Crystal Diffractometers. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Swenson, D., Baenziger, N. C. & Coucouvanis, D. (1978). J. Am. Chem. Soc. 100, 1932–1934.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 1554-1556

Benzoato[hydrotris(3-phenylpyrazol-1-yl-N²)borato]zinc(II)

SATOSHI KAWABATA, KOU NAKATA AND KAZUHIKO ICHIKAWA*

Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060, Japan

(Received 2 August 1994; accepted 26 January 1995)

Abstract

The structure of the title complex, $[Zn{HB(C_9H_7N_2)_3}-(C_7H_5O_2)]$, has been determined; the central Zn atom is coordinated in a distorted tetrahedral environment by three N atoms, one from each pyrazole ring [Zn-N 2.038 (5)-2.084 (5) Å], and by a benzoate O atom [Zn-O 1.935 (5) Å]. A hydrophobic pocket is formed around the fourth coordination site of the Zn atom by the phenyl substituent on each pyrazole ring; this pocket is occupied by the benzoate ligand.

Comment

Since the active site of carbonic anhydrase comprises a Zn^{II} atom coordinated to three histidine imidazole groups, the use of hydrotris(pyrazol-1-yl)borato ligands has become increasingly popular in synthetic inorganic and bioinorganic chemistry (Trofimenko, 1993). In recent reports, significantly bulky ligands such as hydrotris[(3-phenyl- or tert-butyl)pyrazol-1-yl]borato (L), will allow $[ZnL]^+$ formation (Trofimenko, Calabrese & Thompson, 1987; Looney, Han, McNeill & Parkin, 1993; Alfasser, Ruf, Trofimenko & Vehrenkamp, 1993), while the most commonly used of such ligands, hydrotris(3,5-dimethyl or unsubstituted pyrazolyl)borato (L'), will form ZnL'₂. Since the Zn^{II} in the biological system is almost always coordinated in a tetrahedral fashion, $[ZnL]^+$ is much more interesting, and the fourth, the 'mformat a: functional', site can be occupied by a small ligand, such as water, R-COO⁻. OH^- or NO_3^- . This work reports the synthesis and crystal structure of novel benzoato[hydrotris(3-phenylpyrazol-1-yl)borato]zinc(II), (I), where the fourth ligand is a benzoate ion.

Fig. 1 shows the molecular structure of $[Zn{HB(3-Phpz)_3}(OBz)]$. Each distance between the central Zn^{II} and the three N-atom sites in the tridentate ligand HB(3-Phpz)_3⁻ is longer than the distance between Zn and O of the monodentate benzoate ion (see Table 2) by *ca* 0.1 Å. All values of the N—Zn—N bond angles range between 90.0 (2) and 97.0 (2)°, and those of N—Zn—O from 113.4 (2) to 131.3 (2)°. Thus, the geometry around